5G Deployment Options for Wireless Networks

Modern 5G Deployment options for Wireless Networks will include Macro Cells, Small Cells, Beamforming, mmWave and more

5G Deployment Diversity

Greater Deployment Diversity will be necessary to meet user demands for high speed networking in urban, suburban and rural locations.

5G Deployment using mmWave, Beamforming, Small Cells, millimeter wave

– 5G NR mmWave – offers nx10 Gigabit 5G
– 5G NR Sub-6 GHz and LTE coverage – offers nx1 Gigabit 5G
– Ubiquitous LTE: Gigabit LTE, VoLTE, ULL

Accelerating network densification:

5G Deployment using mmWave, Beamforming, Small Cells, millimeter wave

– Existing LTE deployments
– Automotive -(C-V2X)
– Enterprise
– Industrial

Key challenges for 5G include achieving consistent and uniform speeds to users across all regions of metro, suburban and rural. Otherwise “hot zones” with high speed rapidly drop off in capacity as users move away from base stations.

Small Cells and 5G Deployment

Small cells are integral to new 5G network architectures and 5G deployment. 5G Small Cells may operate in sub-6GHz (FR1) or mmWave (FR2) bands depending on coverage and capacity demands

5G Deployment using mmWave, Beamforming, Small Cells, millimeter wave

More distributed baseband processing vs More centralized baseband processing for newer Cloud RAN / VRAN / ORAN type architectures

Some graphic elements reproduced courtesy Ericsson

Private 5G Network Deployments

The rise of industrial & warehouse applications of 5G will necessitate “private 5G” deployments with 5G Core “NextGen Core” installed on the premises, for ultra high availability and low latency.

For Further Information

Please Contact Us

Safety of 5G Frequencies and Networks

Massive MIMO Beamforming 5G

Is 5G Safe? Why do some people think it isn’t?

There’s currently huge controversy in the news today regarding safety of 5G: Is it safe, or not? 5G vendors & scientists say the technology is perfectly safe, and some members of the public allege that 5G isn’t safe. Here we examine the topics factually.

Frequencies used by 5G

There is nothing magic or new about the frequencies used or proposed for 5G. They have ALL been used already, actually for decades! 5G frequencies are split into two sections: FR1 (less than 6GHz) and FR2 (high frequency microwave, or “millimeter wave”).

Almost ALL of the FR1 frequencies have already been used for 4G, and some before that for 3G, and 2G, back to the 1990’s. A good example is 900MHz (the original GSM system) and 1800MHz (second round of GSM). 2100MHz was used extensively for 3G. A few of the FR1 frequencies haven’t been used for 4G before (e.g. 3800 up to 4200MHz) but they have been used for other purposes before.

FR2 frequencies (millimeter wave, or mmWave) have already been used – very widely – for Point-to-Point microwave links. All of the FR2 bands (24Ghz, 26GHz, 28GHz, 38-40GHz, and even the proposed 60GHz) have been used for point-to-point terrestrial microwave links. Those are the parabolic dishes you see everywhere on rooftops or towers. These signals are highly directional “pencil beams” with typically 1 degree or less beam width. The number of these links globally is in the 100,000+ range: they are beaming signals around cities all over the world, usually connecting internet services, beaming signals up to 3G/4G towers or for links between corporate office networks. As a result of the creation of 5G technology, these frequencies are now being re-used (“re-farmed”) for use by 5G base stations to connect end users to the internet, using Point-to-multipoint beamforming technologies. Important note: the use of 5G is no more or less “scary” than the previous use for point to point links. Note that point-to-point microwave has existed since 1930: 90 years ago, and health risks (and lack of risk to public) are very well understood.

Operating Distances

5G in lower frequencies travels longer distances than higher frequencies, due to laws of physics. This is why the lower frequencies are used for Rural locations for wide area coverage, whereas the higher frequencies are reserved for use in cities, where distances are shorter, and user densities higher.

Also, the lower frequencies (lower end of FR1) can be transmitted at higher power levels than the higher frequencies. Conversely, high frequencies (mmWave, FR2) are limited to lower power due to limitation of today’s commercial technology.

5G in the 24GHz, 26GHz, 28GHz range and above (also called millimeter wave, or mmWave bands) uses higher frequencies than 4G. As a result, these high frequency 5G signals are not capable of traveling large distances (over a few hundred meters), unlike 4G or lower frequency 5G signals (sub 6 GHz) so penetration and hence coverage are lower.
This higher frequency therefore requires placing 5G base stations every few hundred meters in order to use higher frequency bands.

5G and RF power levels

Some of the “5G Conspiracists” allege that 5G will cause damage/health risk to humans. There is simply no measured case or evidence of this happening. If there were, there would be scientists & health advisors demanding change. Let’s examine in more detail:

5G sites using FR1 transmit at exactly the SAME power levels as 4G sites. So you’re not irradiated any more than a 4G site was. 40W a typical figure for a macro (big) site, and 1W for a Small Cell (small site).
Note carefully: 5G FR1 sites use EXACTLY the same power levels as 4G sites, which is similar to 3G sites, and before that, 2G sites …
5G uses “sector antennas” (typically 3 on a macro site) just like 4G does.
Therefore any related health risk is therefore the same for 5G as it’s predecessors.

5G sites using FR2 transmit at MUCH lower power levels: less than 1 Watt typically. These high frequency signals have poor penetration of buildings and obstacles, so are generally “line of sight” only. As noted above, ALL of the FR2 frequencies have been used before, for terrestrial microwave links, and at similar power levels (less than 1 Watt).
The use of beamforming steers the signal to the required locations; this reduces the overall amount of transmitted power emitted into the air, and hence total radiation. Put simply, if you aren’t using your device, the base station doesn’t point power at you.

How to 5G power levels compare to other Radio/RF transmitters?

The VERY good question conspiracists & “truthers” never discuss. Let’s go straight there.

  • A TV transmitter such as Crystal Palace in London, UK currently transmits digital terrestrial Television at over 1200kW (1.2 MEGAWATT, or 1,200,000 watts), and has been transmitting TV since 1956.  That is 120 MILLION TIMES more power than a V-band 60GHz radio, and transmitting for over 60 years.   Did you hear “5G protesters” complaining about TV transmitters? No, because there’s no widespread history of health effects over 60 years .
  • Airport Radars:   To keep planes flying safely, airport radars transmit pulses up to 25kW (25 kilowatts, or 25,000 Watts) into the air, with average power 2.1kW (2100 Watts).  Interestingly, these signals are at similar frequencies to 3G, 4G and 5G.  In the USA, 2.7 – 2.9 GHz is used.  Yet nobody complains about these high power levels of radar, which has been in constant use since the 1930s:  90 years.
  • Digital Radio (DAB): Crystal Palace transmits digital radio with 18kW (18,000 Watts) of radio power. Compare that with 40W of a large (macro) 5G base station.
  • Emergency Service (TETRA) Radios : used by police, fire & ambulances: transmit at up to 45 Watts. Very similar to the 40W of a large (macro) 5G base station.

You will notice that the HIGHEST powered transmitters are Television transmitters (Megawatt), Radars & Radio stations (10’s of Kilowatts). A macro 5G base station at 40W comes nowhere close. Note that these various transmitters are used on different frequencies, there’s no “one” frequency that is safer (or less safe) than another. It’s only the RF exposure (power) level that matters – specifically, the power incident on your own human body.

Why is there no mass hysteria from “Truthers” about TV, Radar and Radio transmitters? Because if they were THAT bad for our health, they would have been banned and switched off decades ago. Evern the largest (macro) 5G transmit powers are tiny by comparison.

Key “Truther” points examined:

  • 60GHz is absorbed by Oxygen in the bloodstream (Untrue)
    Out in the open air this absorption is true : but not in the body! 60GHz signals are 40% reflected by skin surface, absorbed by water (body is 60% water), and does NOT enter the bloodstream. The “Truthers” invent Pseudo-science , claiming: “This causes Oxygen to not bind well to blood hemoglobin causing the body to become Oxygen starved (hypoxia)”  This statement is hopelessly unscientific.  The ultra low power 60GHz signals do not even penetrate human skin.  The signals are partly reflected and partly absorbed by the skin, preventing them entering the body and cannot cause the claimed effect.  There is NO scientific study which will back up this claimed hypoxia effect on the human body.  The “5G protesters” NEVER provide any, because there is no publication or science that would agree with their unscientific claims – it’s simply not impossible. They make stuff up to make you afraid, and sharing their website gives them more “hits”: Some have adverts on their sites. More clicks means more money for them! (Fear=money for some)
  • 5G is a state-sponsored weapon: Untrue.
    5G is simply a marketing term applied to the work of the 3GPP, a standards body which includes equipment vendors & operators, as a linear development of from work that was labelled 4G and 3G before it. Governments are not included in developing 2G, 3G, 4G, 5G… and future 6G technology – corporations are.
  • Governments want to use 5G to control the population: Untrue,
    in that 5G gives Government agencies no more data than 4G does. Your location, digital activities, content & data usage habits are already well known to Google, Facebook and – on warrant – Law Enforcement Agencies. 5G does not change this at all. You already gave all that data to companies 10 years ago when you bought a 3G smartphone, or signed up with Social Media sites, apps, Apple or Google services. Law enforcement agencies can demand access to that data with a warrant.
  • IoT is scary: Untrue, in any way that relates to 5G.
    “Internet of Things” is a marketing label applied to home gadgets – and industrial devices – that are connected via the Internet by either WiFi or cellular (4G, 5G) networks. The same IoT label applies to a WiFi doorbell. Main concern with IoT is DATA security, particularly physical security (locks, cars) and CCTV camera feeds. That has nothing to do with 5G, because the concern is the data security of the devices & security attitudes of companies that sell them. Note that the WiFi-connected IoT devices are a much greater security risk than 4G, 5G because WiFi is much easier for criminals to hack/spoof.
  • 5G causes cancer: Untrue.
    5G uses the same signals as 4G (FR1), plus some millimeter wave frequencies (FR2) which were previously used by microwave links for decades. There is no link to cancer in 30+ years of medical research and continued exposure to these signals. Microwave & radio signals used by 4G & 5G are NON-ionising radiation which is not hazardous except in massively high power levels (far more than 4G, 5G etc). The “dangerous” radiation type is IONISING radiation, including X-rays and similar. Those are not used for communication for this exact reason: they are dangerous.
    (Side-note: X-Rays used in medicine are VERY carefully controlled. Had an X-Ray? note the operators have shielding everywhere, because they use it every day & could get higher does than patients. They regulate the dose to you carefully for your safety)
  • 5G is linked to Coronavirus: Untrue.
    There’s no link at all. Many of the countries with terrible cases of Coronavirus have no 5G. And vice versa. All the theories connecting the two have been soundly debunked by reputable & international scientists.
    (Side note: there IS a link between Coronavirus deaths and air pollution: because the Coronavirus effect on the body attacks the lungs, putting patients with poor respiration are at great risk. Cleaning up diesel emissions, industrial cities & banning smoking would have saved 1000’s of lives from Coronavirus.)

Power levels and Distance (very important topic)

The RF power emitted from the transmitter antenna spreads with distance. This means that a person some distance away from the tower only receives a weak signal. As you DOUBLE the distance, you receive one QUARTER the power level. This is called the “inverse square law”. What it means in practice is that a person 100’s of metres away from a base station is radiated with only microwatts of power, which is insignificant, especially compared to this next point:

The highest radiation of Radio signals you will get is from …. wait for it …
Your cellphone is on your person – and when used in the worst case, held directly against your head. The cellphone transmits at up to 1 Watt power – in all directions – which means the signals go into your head as well as the air around you. This topic remains the same since the first cordless phones in the 1980’s, analogue cellphones and GSM phones in the 1990’s. Using the phone means the signal is close to your head – and the most sensitive item, your brain. The HIGHEST amount of radiation you will receive from any wireless system is from your OWN HANDSET when you hold it to your head to make a voice call. Therefore, if you are really worried about cellphone safety – STOP using your OWN phone. The radiation your body receives from it is 1000’s of times stronger than that you receive from the mast.

If you’re worried about 2G, 3G, 4G, 5G masts: stop now. The FIRST thing you must do is switch off your OWN phone, and never hold it against your head to talk. And if it’s in your pocket/jacket/handbag do remember, it’s still transmitting to the mast, updating it’s location to the network, and often up/downloading data to your apps continually. It’s still transmitting, even in “standby”.
If you’re not prepared to turn off your OWN PHONE, then stop worrying about masts at all. The signal from masts signal is over 1000 times weaker than your OWN PHONE when it reaches your body.

Massive MIMO Beamforming 5G
Diagram courtesy Qualcomm

5G FR2 mmWave Penetration

Also, these higher frequency 5G signals cannot penetrate solid objects easily, such as cars, trees, and walls, because of the nature of these higher frequency electromagnetic waves. 5G cells can be deliberately designed to be as inconspicuous as possible, which finds applications in places like restaurants and shopping malls.

Cell types
5G NR FR2
Deployment environmentMax. number ​of usersOutput power ​(mW)Max. distance from ​base station
FemtocellHomes, businessesHome: 4–8
Businesses: 16–32
indoors: 10–100
outdoors: 200–1000
10s of meters
Pico cellPublic areas like shopping malls,
airports, train stations, skyscrapers
64 to 128indoors: 100–250
outdoors: 1000–5000
10s of meters
Micro cellUrban areas to fill coverage gaps128 to 256outdoors: 5000−10000few hundreds of meters
Metro cellUrban areas to provide additional capacitymore than 250outdoors: 10000−20000hundreds of meters
Wi-Fi
(for comparison)
Homes, businessesless than 50indoors: 20–100
outdoors: 200–1000
few 10s of meters
5G NR mmWave FR2 coverage

Challenges for 5G Safety – for EVERYONE !

5G Networks
5G Networks

It is the responsibility of the 4G/5G cellular industry, national regulators, safety agencies and all academics to be truthful about the safety of all radio transmitters. There must be no cover-ups, lying, or partial truths. Medical research into possible risks of RF exposure must continue and be well funded. The industry needs to deliver reliable cellullar service without putting populations at risk. “Profit” cannot come at cost of public safety.

Conversely – “truthers” making up pseudo-science & invented “facts”, with blogs written by uneducated persons have so far resulted in:

  • Violence and threats against telecom employees doing their jobs on sites
  • 4G/5G sites being burned down (resulting in loss of service to Hospitals, including those treating Coronavirus and critical health conditions)
  • Death threats and threats of violence against business owners.

Now think clearly and rationally: EVERYONE has a legal & moral responsibility to behave within the law and not to threaten the health of others.
Clearly those posting non-factual “truther” content on Internet websites & social medahave a responsibility to bear. If you are one of those authors, think carefully. Your action could well cause harm or death of others.

I simply don’t believe you!

That’s the frequent response of someone when confronted with information that conflicts with their previously held opinion or prejudices. In the case of 5G, we have we have plenty of information sources. On the “5G is safe” side we have:

  • All reputable Scientists Worldwide
  • All national Governments
  • Biologists Worldwide
  • All safety Agencies Worldwide
  • The Cellphone industry
  • 30+ years of no measurable health effects of cellphones on worldwide population

And on the “5G is unsafe” side we have:

  • Conspiracists without facts
  • Non-scientific blog writers, some whom earn $ from adverts on their blogs (!)
  • Narcissists who want “likes” on posts, or TV appearances
  • Easily-swayed but highly opinionated people
  • NO evidence of health effects over 30+ years
  • NO reputable scientists !

Have a careful think about what sources of information you take in forming your world view. Just two hundred years ago, our ancestors burned and drowned innocent people for “witchcraft”. Why are we any better informed than our ancestors? Answer: SCIENCE and EDUCATION. We use logic, rather than irrational and uninformed fear.

Conclusion for 5G & Safety

There is a huge media frenzy and “truther sites” full of pseudo-science about 5G & safety. We suggest we make our decisions based on science and facts. Here’s our summary:

  • 5G is no less safe than 4G. If you didn’t protest 4G, stop protesting 5G.
  • (If you DID protest 4G, then carry on protesting, but remember, 5G is no less safe!)
  • Millimeter wave” frequencies have already been used for 3 decades or more for terrestrial microwave links. We’ve already been irradiated by them for 30+ years, with no harm to us. 5G just re-uses these same frequencies.
  • There is no measured health risk from “Millimeter Wave” signals in any credible study or publication. 60GHz doesn’t stop O2 in the blood, that’s a non-scientific myth invented by “truther” blogs. No medical reports or science to back up claims.
  • “Millimeter wave” (FR2) transmitters are on average 50x less powerful than the lower frequency FR1 macro (main site) transmitters.
  • The HIGHEST radiation you will get is from your OWN cellphone: it’s right next to your body, and transmits even in your pocket/jacket/handbag. If you’re worried, turn it off.
  • Turning off 5G transmitters on masts makes AlMOST NO DIFFERENCE because the 2G, 3G, 4G transmitters on the mast are still transmitting, all at very similar power levels and frequencies, and distance to you is the same. Power levels radiated to your body remains almost unchanged whether you turn 5G on or off.
  • Turning OFF all the cellphone masts will cause deaths. A LOT of them, as your loved ones can’t dial an ambulance, lost persons, persons caught in fires & crash victims can’t call help. Emergency responders also rely on the masts. Conversely, there’s no measured death rate from cellphone masts, in over 40 years of widespread use.
  • LOGIC as well as ETHICS says leave the masts turned on.

For Further Information

If you are interested in 5G Health & Safety:
Please Contact Us

5G Coverage using FR2 mmWave frequencies

Massive MIMO Beamforming 5G

5G FR2 Coverage and Penetration

5G in the 24GHz, 26GHz, 28GHz range and above (also called millimeter wave, or mmWave bands) uses higher frequencies than 4G. As a result, these high frequency 5G signals are not capable of traveling large distances (over a few hundred meters), unlike 4G or lower frequency 5G signals (sub 6 GHz) so penetration and hence coverage are lower.
This higher frequency therefore requires placing 5G base stations every few hundred meters in order to use higher frequency bands.

5G FR2 mmWave Penetration

Also, these higher frequency 5G signals cannot penetrate solid objects easily, such as cars, trees, and walls, because of the nature of these higher frequency electromagnetic waves. 5G cells can be deliberately designed to be as inconspicuous as possible, which finds applications in places like restaurants and shopping malls.

5G mmWave FR2 Penetration and Coverage
Diagram courtesy Qualcomm
Cell types
5G NR FR2
Deployment environmentMax. number ​of usersOutput power ​(mW)Max. distance from ​base station
FemtocellHomes, businessesHome: 4–8
Businesses: 16–32
indoors: 10–100
outdoors: 200–1000
10s of meters
Pico cellPublic areas like shopping malls,
airports, train stations, skyscrapers
64 to 128indoors: 100–250
outdoors: 1000–5000
10s of meters
Micro cellUrban areas to fill coverage gaps128 to 256outdoors: 5000−10000few hundreds of meters
Metro cellUrban areas to provide additional capacitymore than 250outdoors: 10000−20000hundreds of meters
Wi-Fi
(for comparison)
Homes, businessesless than 50indoors: 20–100
outdoors: 200–1000
few 10s of meters
5G NR mmWave FR2 coverage

Challenges for 5G Coverage:

Transmissions in mmWave bands suffer from significantly higher path loss and susceptibility to blockage. In addition, mmWave RF complexity makes meeting the cost and power constraints of mobile devices extremely challenging, which is why mmWave for mobile communications has historically been not feasible—until now. 5G NR mmWave is changing this.

Uses for 5G mmWave

While the initial focus for mobile operators is to quickly expand network capacities by starting deployments of 5G NR mmWave in existing dense urban markets, there are even more opportunities for mmWave beyond traditional macro networks. One area of interest is to bring mmWave indoors to address the exploding demand of fiber-like wireless broadband access in crowded venues, such as convention centers, concert halls, and stadiums. These venues have traditionally been challenged with limited network capacity, thereby constrained with the quality of service (e.g., slow speeds and unreliable connectivity) they can deliver. With mmWave’s significantly wider bandwidth and high spatial multiplexing gains, mobile operators and service providers could rapidly make multi-Gigabit, low-latency connectivity available to a large number of users.

Another exciting opportunity for mmWave is for private indoor enterprises, including offices, shop floors, meeting rooms and more. Imagine having virtually unlimited capacity and fiber-like wireless connectivity for your devices at work, no matter if it’s a smartphone, tablet, laptop, or mobile extended reality (XR). For these indoor deployment scenarios, we have also performed extensive study to show that significant coverage (i.e., >90%) and multi-Gbps median speeds can be achieved simply by co-siting mmWave small cells with existing LTE or Wi-Fi access points.

For Further Information

If you are interested in 5G Deployment Solutions:
Please Contact Us

5G NR frequency bands

RF Frequency bands for 5G NR are being separated into two different frequency ranges.

Frequency Range 1 (FR1)

FR1 includes sub-6GHz frequency bands, some of which are bands traditionally used by previous standards, but has been extended to cover potential new spectrum offerings from 410 MHz to 7125 MHz.

Frequency Range 2 (FR2)

FR2 includes frequency bands from 24.25 GHz to 52.6 GHz. Bands in this millimeter wave (mmWave, MMW) range have much shorter range but higher available bandwidth than bands in the FR1.

Frequency bands and channel bandwidths

From the latest published version of the 3GPP TS 38.101, the following tables list the specified frequency bands and the channel bandwidths of the 5G NR standard.

Note that the NR bands are defined with prefix of “n”. When the NR band is overlapping with the legacy 4G LTE band, they share the same band number.

Frequency Range 1

BandDuplex modeƒ (MHz)Common nameSubset of bandUplink (MHz)Downlink (MHz)Duplex spacing (MHz)Channel bandwidths (MHz)
n1FDD2100IMT1920 – 19802110 – 21701905, 10, 15, 20
n2FDD1900PCS[A 4]n251850 – 19101930 – 1990805, 10, 15, 20
n3FDD1800DCS1710 – 17851805 – 1880955, 10, 15, 20, 25, 30
n5FDD850CLR824 – 849869 – 894455, 10, 15, 20
n7FDD2600IMT‑E2500 – 25702620 – 26901205, 10, 15, 20
n8FDD900Extended GSM880 – 915925 – 960455, 10, 15, 20
n12FDD700Lower SMH699 – 716729 – 746305, 10, 15
n20FDD800Digital Dividend (EU)832 – 862791 – 821−415, 10, 15, 20
n25FDD1900Extended PCS1850 – 19151930 – 1995805, 10, 15, 20
n28FDD700APT703 – 748758 – 803555, 10, 15, 20
n34TDD2100IMT2010 – 2025N/A5
n38TDD2600IMT‑E[A 5]n412570 – 2620N/A5, 10, 15, 20
n39TDD1900DCS–IMT Gap1880 – 1920N/A5, 10, 15, 20, 25, 30, 40
n40TDD2300S-Band2300 – 2400N/A5, 10, 15, 20, 25, 30, 40, 50, 60, 80
n41TDD2500BRS2496 – 2690N/A5, 10, 15, 20, 40, 50, 60, 80, 100
n50TDD1500L‑Band (EU)1432 – 1517N/A5, 10, 15, 20, 40, 50, 60, 80[A 6]
n51TDD1500Extended L‑Band (EU)1427 – 1432N/A5
n66FDD1700Extended AWS[A 7]1710 – 17802110 – 2200[6]4005, 10, 15, 20, 40
n70FDD2000AWS‑41695 – 17101995 – 20203005, 10, 15, 20[A 6], 25[A 6]
n71FDD600Digital Dividend (US)663 – 698617 – 652−465, 10, 15, 20
n74FDD1500Lower L‑Band (US)1427 – 14701475 – 1518485, 10, 15, 20
n75SDL[A 8]1500L‑Band (EU)N/A1432 – 1517N/A5, 10, 15, 20
n76SDL[A 8]1500Extended L‑Band (EU)N/A1427 – 1432N/A5
n77TDD3700C-Band3300 – 4200N/A10, 20, 40, 50, 60, 80, 100
n78TDD3500C-Bandn773300 – 3800N/A10, 20, 40, 50, 60, 80, 100
n79TDD4700C-Band4400 – 5000N/A40, 50, 60, 80, 100
n80SUL[A 9]1800DCS1710 – 1785N/AN/A5, 10, 15, 20, 25, 30
n81SUL[A 9]900Extended GSM880 – 915N/AN/A5, 10, 15, 20
n82SUL[A 9]800Digital Dividend (EU)832 – 862N/AN/A5, 10, 15, 20
n83SUL[A 9]700APT703 – 748N/AN/A5, 10, 15, 20
n84SUL[A 9]1900IMT1920 – 1980N/AN/A5, 10, 15, 20
n86SUL[A 9]1700Extended AWSn801710 – 1780N/AN/A5, 10, 15, 20, 40

Frequency Range 2

Bandƒ (GHz)Common nameSubset of bandUplink / Downlink(GHz)Channel bandwidths (MHz)
n25726LMDS26.50 – 29.5050, 100, 200, 400
n25824K-band24.25 – 27.5050, 100, 200, 400
n26039Ka-band37.00 – 40.0050, 100, 200, 400
n26128Ka-bandn25727.50 – 28.3550, 100, 200, 400

For Further Information

Please Contact Us